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Abstract—The paper is concerned with the structural mechanics of assemblies of bars and pin-
joints, particularly where they are simultaneously statically and kinematically indeterminate.
The physical significance of the four linear-algebraic vector subspaces of the equilibrium matrix
is examined, and an algorithm is set up which determines the rank of the matrix and the bases
for the four subspaces. In particular, this algorithm gives full details of any states of self-stress
and modes of inextensional deformation which an assembly may possess. A scheme is devised
for the segregation of inextensional modes into rigid-body modes (up to six of these may be
allowed by the foundation constraints) and “‘internal’’ mechanisms. In some circumstances a
state of self-stress may impart first-order stiffness to an inextensional mode. A matrix method
for detecting this effect is devised, and it is shown that if there is no state of self-stress which
imparts first-order stiffness to a given mode, then that mode can undergo rather large distortion
which involves either zero change in length of the bars or, possibly, changes in length of third
or higher order in the displacements. The significance of negative stiffness, as indicated by the
matrix method, is discussed. The paper contains simple examples which illustrate all of the
main points of the work.
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I. INTRODUCTION

The concepts of statical and kinematical determinacy are central to an understanding
of the mechanics of pin-jointed frameworks of the type shown in Figs | and 2. The
performance of a pin-jointed framework is a good guide to the performance of a real
engineering structure having the same layout but with firmly connected joints[1-3].
These concepts are usually introduced to engineering students by means of an example
such as that shown in Fig. i(a). This frame is clearly statically determinate. since the
tension in every bar can be determined by means of the equations of equilibrium for
a given set of components of external force applied to the joint: the number of equations
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(G) s:O,m:O (b) s:O,m:l

(c) s=1,m=0 (d.1) s=z1,mz=1

(dZ) s =1 , M =1

Fig. I. Perspective sketches of assemblies to illustrate statical and kinematical determinacy and
indeterminacy. (a) The three foundation joints lie at the corners of a square. (b) One bar has
now been removed. and the assembly has a mode of inextensional displacement in which the
central node moves towards the reader. (¢) The fourth bar makes the assembly statically in-
determinate. (d.1) A third bar added to (b) makes the assembly both statically and kinematically
indeterminate: but only small displacements of the inextensional mechanism are possible. (d.2)
As(d.1), except that the three foundation joints are colinear, and free motion of the inextensional
mechanism. as in (b), is possible.

e

(a) (b)

Fig. 2. (a) A ring assembly which satisfies Maxwell's rule, but (b} is statically and kinematically
indeterminate with a free mechanism of inextensional displacement.
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is equal to the number of unknowns, the coefficient matrix is nonsingular, and the
solution is unique. This frame is also kinematically determinate in the sense that the
position of the joint is uniquely determined (on one side of the plane of the base) by
the lengths of the bars, as may readily be verified.

If now any one bar of the frame is removed, as in Fig. 1(b), the resulting assembly
becomes a mechanism having one degree of freedom: it is kinematically indeterminate,
since the location of the joint is not now uniquely determined by the length of the bars.
The assembly has a mode of inextensional deformation, since it can distort without
any change of length of the members.

But if an extra bar is added to the frame of Fig. 1(a), as shown in Fig. 1(c), the
frame becomes statically indeterminate: there are now more unknowns than equations
of equilibrium, and the solution for the set of bar tensions is not unique. Such a frame
may be described as having a single redundant bar; but it is perhaps better to think of
the indeterminacy in terms of a single state of self-stress, that is. a set of bar tensions
which are in statical equilibrium with zero external force. In the present example it is
clear that the last bar could be put into the assembly in a state of tension, and then
the conditions of equilibrium would require other bars to be stressed also. It is easiest
to visualise this by imagining that the new bar is a little shorter than the distance between
the two joints which it is to connect, and that tension is necessary to provide the small
elastic elongation which is required to make the bar fit.

An example of this type is usually supplemented, in undergraduate courses,
by a formula known as Maxwell’s rule, which is a necessary condition for both statical
and kinematic determinacy in a framework. The three-dimensional version of this for
frameworks which are adequately connected to a foundation (e.g. as in Figs 1 and 2) is

b =3J, (M

where b is the total number of bars and J is the number of non-foundation joints.

This rule is based on the notion that the number of equations must be equal to the
number of unknowns if the solution is to be unique[2].

A discussion along these lines of the general theory of structural frameworks may
be adequate at an elementary level, but it has serious weaknesses in relation to more
searching problems. Thus, it has been known for many years (e.g. [3]) that some frame-
works satisfy Maxwell’s rule and yet are kinematically indeterminate (see Figs 1(d) and
2). More recently it has been appreciated that such assemblies are also capable of self-
stress, and moreover that in some circumstances a state of self-stress can impart some
first-order stiffness to a mode of inextensional deformation(4, 5].

A more complete treatment of the linear-algebraic relationship between the num-
bers of equations and unknowns, which introduces the important idea of the rank r of
the equilibrium matrix and its transpose, the kinematic matrix, leads to the expressions

s=b - m = 3J — r, (2)
and hence
s —m=5b-3J 3)

as a replacement for (1) when all of the foundation joints (which are not counted inJ)
are pinned to the foundation: here s (=0) is the number of independent states of self-
stress and m (=0) is the number of independent inextensional mechanisms.

The first step in the mechanical analysis of any given framework is the determi-
nation of the values of both s and m. If one of these can be found, eqn (3) immediately
gives the other, since the values of b and J can be obtained by counting. But the
determination of either s or m is not a trivial matter. in general: for, as Tarnai[6] has
pointed out, the values of s and m depend not only on the numbers of bars and joints,
nor even on the topology of the connections. but on the complete specification of the
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Euclidean geometry of the assembly. Those who attempt to classify the mechanics of
frameworks in terms of b and J alone end up in a state of confusion[7, 8].

For some specific frameworks it is possible to “‘spot” the value either of s or of
m by physical intuition[5]. But it is clearly desirable to have a general algorithm for
the direct computation of s and m from the geometrical data of any given framework.
Such a scheme requires, of course, the determination of the rank of a matrix.

In this paper we describe briefly, but in sufficient detail, a computational scheme
which not only determines the values of s and m in this way, but also computes the
statical details of all of the states of self-stress and the kinematical details of all of the
inextensional mechanisms. The method exploits in a simple way the standard linear-
algebraic theory of vector spaces[9]: it turns out that all of the information which we
require is contained in the Sfour fundamental vector subspaces associated with the
equilibrium marrix. An extension of the same ideas enables us to segregate the m
mechanisms of a given assembly into the two classes of rigid-body motions and internal
mechanisms: rigid-body motions occur when the assembly is less than fully restrained
to a rigid foundation, up to a maximum of six for an assembly ‘‘free in space’’. For
this purpose it will be necessary to introduce an extra parameter of foundation con-
straint into (2) and (3).

We also discuss the way in which a state of self-stress may, in general, impart
some first-order stiffness to an inextensional mechanism, and we show how the cal-
culation of this may be done. This feature is crucial to the action of pretensioned cable-
nets, which may be described as self-stressed mechanisms having a large number of
degrees of freedom(s, 10]; and in a forthcoming paper we shall extend our previous
work to analyse their response to arbitrary loading.

It has been known for many years that there are, physically, two distinct kinds of
inextensional mechanisms, which may be described as infinitesimal and finite, re-
spectively. In a finite mechanism (e.g. Figs 1(b) and (d.2), Fig. 2) the joints can move
freely for a finite distance with absolutely no change in the lengths of the bars. In an
infinitesimal mechanism, on the other hand [e.g. Fig. 1(d.1)], there are, in general,
some small changes in length of the bars when the joints move. These may be of second
order in terms of the displacements or, in general, of third or higher orders. Infinitesimal
inextensional mechanisms “‘tighten up”” when mobilised, as in this example, in a way
which depends quantitatively on the elastic properties of the bars.

A linear-algebraic analysis, which is set up only for the initial geometrical config-
uration, can detect inextensional mechanisms, but it cannot distinguish between these
different types: in effect it can detect only the absence of first-order changes of length
of the bars when the joints move.

Tarnai[6] has conjectured that it is only the infinitesimal inextensional mechanisms
that can be stiffened by states of self-stress; and in another paper[11] he has listed
among some problems for future research the following two questions.

I. What criterion determines whether self-stress stiffens an assembly which is both

statically and kinematically indeterminate? :

2. How can matrix methods be used to decide whether kinematical indeterminacy

takes the form of an infinitesimal or a finite mechanism?

We concur with Tarnai’s conjecture, and we give a physical explanation of it. Then
we answer Tarnai’s two questions by introducing a generalised equilibrium matrix and
by setting out an algorithm which detects unambiguously which, if any, mechanisms
are stiffened by a given state of self-stress. This algorithm, which is based on linear
algebra, detects the presence of first-order stiffness in the self-stressed assembly. There-
fore (as Koiter{12] has pointed out) it can only detect, in answer to Tarnai's second
question, the presence of infinitesimal mechanisms which involve second-order changes
of length, and which Tarnai (private communication) and Koiter[12] describe as “‘first
order infinitesimal mechanisms’".

Various points need to be mentioned before we begin our detailed analysis. First,
we shall assume without further discussion that the idealisation of a physical framework
or cable-net as a ‘‘pin-jointed assembly’’, loaded only at the joints, is appropriate. If
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a member of the physical framework happens to be a wire—as in a cable-net—then
the idealisation is only satisfactory, of course, as long as the wire is in a state of tension;
and hence it is necessary to check in any given case that this is so. We shall also
similarly disregard the possibility of buckling of thicker bars in compression.

Second, we shall work within the context of small-deflection theory when setting
up the matrices from which the values of 7 and s are determined. That is, we shall set
up the equilibrium equations for the loaded assembly in its original, undistorted con-
figuration. This is, of course, a well-known procedure in structural mechanics which
produces a set of linear-algebraic equations, and its limitations are well known. For
assemblies having m > 0 the original configuration is not unique; but the equilibrium
equations can still be set up in the given configuration. We have already noted the
inexactness in the assessment of the changes in lengths of the bars which is inherent
in a description of the kinematics of an assembly with reference only to the initial
configuration.

2. LINEAR ALGEBRA OF PIN-JOINTED ASSEMBLIES

In this section we describe the equilibrium matrix and its transpose, the kinematic
matrix, for a general pin-jointed framework; and we remark on the physical significance
of the four vector subspaces which are well known in the linear-algebraic treatment of
matrices.

Consider an assembly which consists of a total of j joints connected by b bars to
each other and by a total of & kinematic constraints to a rigid foundation.

Two sets of statical variables must be considered: the tensions in the bars and the
external forces applied to the joints. The tension in each bar is denoted by a single
number, so there are altogether b tensions, assembled in the vector t. Each uncon-
strained joint can be acted upon by an arbitrary force in three-dimensional Euclidean
space, which we shall express as three independent scalar components. Joints which
are held to the foundation with three, two or one kinematic constraints can transmit to
the assembly zero, one or two components of external force, respectively: the reactions
which are provided by the foundation play no part in the following analysis. We thus
have a total of 3j — £ components of external force, to which we shall refer as 3j — k
loads, assembled in the vector f.

Similarly, two sets of variables are needed to perform the kinematical analysis:
the elongations of the bars and the displacements of the Joints. Each of these corre-
sponds directly to one of the statical variables, and we shall keep the same order of
numbering for both sets. The components of joint displacement have precisely the same
positive sense as the corresponding external loads. Thus, we have as kinematical vari-
ables: b elongations, assembled in the vector e; 3j — & displacements, assembled in
the vector d.

In setting up the equations in a Cartesian framework it is convenient to use a tension
coefficient[2] instead of the tension proper for each bar, defined as tension/length. Then
the corresponding measure of elongation of the bar is an elongation coefficient, defined
as elongation x length. We shall use the terms rension, elongation to include these
convenient variants.

The three equilibrium equations for a general, unconstrained joint i, which is con-
nected by bars [, m to two joints A, j, respectively (Fig. 3(a)], may be written in terms
of tension coefficients:

(xi — xp)t; + (x; ~ XMm = fi,
i = ywts + Vi = Y = foy, 4)

(i =z + (7 — ZMm = fi.

Here (x;, y;, z,) are the Cartesian coordinates of joint i in its original position, and fieyz
are the components of external force.
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Fig. 3. (a) View along the axis 0z of a joint / which carries external forces and is connected by
bars to joints k. j. (b} Assembly of equilibrium equations (4) in matrix form.

In this way the 3j — k equations of equilibrium in & unknowns can be written and
assembled in matrix form as in Fig. 3. This may be written

At = f 5

A is the (3j — k) by b equilibrium mairix.

The equations of kinematics of small displacements of the assembly may now be
set up. For each bar there is one equation relating its elongation to the components of
displacement of the joints at either end; and the resulting equations may be written

Bd = e. (6)
B is the & by (3 — k) kinematic matrix.
It is straightforward to prove, by application of the principle of virtual work[4, 13],
the general relationship
B = AT 7
The matrix A is a linear operator between R”, the space of tensions and RY-=,

the space of loads. The theory of linear vector spaces indicates that four distinct vector
subspaces are associated with matrix A: see e.g. [9].
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The names and dimensions of the four subspaces are as follows:

Name Dimension
b (1) Rowspace of A ra
bar space R {(ii) Nullspace of A s
®)
.. 3« J (i)  Column space of A ra
jont space R {(iv) Left nulispace of A m
Equations (2) are now replaced by
Szb—-rA, m=3j‘~k-—rA, (9)
and (3) is replaced by
s—m=b -3 + k. (10)

We shall indicate in Section 3 how the value of r4 (and hence of m, 5s) may be
computed for a given matrix A, and how a basis may be determined for each of the
four subspaces, i.e. a set of independent vectors which span the space. But first we
shall describe the four subspaces in the order (iti), (iv), (ii), (i) in terms which are
consonant with traditional textbook ideas in the theory of structures[2, 3]. We shall
assume, for the sake of generality, that s > 0 and m > 0.

In the following description we shall, for the sake of simplicity, consider as two
separate load conditions the (unique) projections of a given arbitrary load condition
onto the column space and the left nullspace of A, respectively. In this way we shall
consider only load conditions which lie in one or the other of the two orthogonal
subspaces. Similarly, we shall refer separately to the projections of an arbitrary joint-
displacement condition onto the same two subspaces; and we shall also treat in a similar
manner sets of tensions and elongations only in terms of their projections onto the
rowspace and the nullspace of A, respectively.

The column space of A. (iii) is the space spanned by the columns of A. By (5)
this gives the range of the load vector f which can be supported in statical equilibrium
by the assembly in its original geometry. There are r, independent columns of A, and
we may use these as the basis of the column space of A, which thus has dimension Fa.
Physically each of these r, columns corresponds to a particular bar in the assembly.
The other 4 — ry, = s bars are redundant, and if they are removed (or otherwise
rendered incapable of sustaining tension) the non-redundant bars form a statically
determinate assembly; i.e. the tension coefficients are determined uniquely by the
equilibrium equations when a permissible external load vector is applied.

Since B = AT, there is also a kinematic interpretation of this subspace. The column
space of A includes all possible modes of displacement of the assembly which require
the elongation of one or more bars, i.e. all modes of deformation which are nort inex-
tensional mechanisms. This may be deduced directly from the statical description given
above, by application of the principle of virtual work.

The left nullspace of A. (iv) represents the range of loads f which, in contrast to
the range described above, cannot be carried by the assembly in its original configur-
ation. Its dimensionis 3j — k — ry = m. It is important to realise that these forbidden
components of load are related to the inextensional mechanisms of the assembly, which
they would “*excite’”. And indeed, in kinematic terms the left nullspace of A is precisely
the space spannied by the m independent inextensional mechanisms of the assembly.
Following Vilnay (private communication) we shall refer to the load vectors in the
column space of A as firred loads: they are *‘fitted”” in the sense that they “‘balance’” and
do not “‘excite’’ any of the m mechanisms.

The left nullspace is in fact the orthogonal complement of the column space of A.
This is indicated schematically on the right of Fig. 4. There are altogether 3/ — £k
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'self~gtress’
T tensions;
s incompatible
elongations loads which
l n cannot be carried;
“ 'inextensional mechanism'
l displacements
b 3j~k
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R ——— loads ('fitted') which can be carried;
tensions in equilibrium with loads; displacements which require elongations
compatible elongations

BAR-SPACE of tensions/elongations (b) JOINT~SPACE of loads/deflections {33~k)

Fig. 4. The four fundamental subspaces of matrix A [cf. (9)]. The basis of the load/deflection

space involves 3j ~ k vectors each containing 3/ — k elements but divided into two orthogonal

subspaces containing r4 and m vectors, respectively. The vectors of the orthogonal subspaces

are drawn orthogonal. (The legends refer to the projections of arbitrary load conditions. etc.
onto the respective subspaces.)

elements. The basis of the column space occupies r, of these, while the remaining m
form the basis of the left nullspace. The diagram is drawn to suggest the orthogonality
which comes directly from the linear algebra: every vector in the left nullspace is
orthogonal to every vector in the column space. Thus, every forbidden load condition
is orthogonal to each fitted load, and every inextensional mechanism is orthogonal to
each extensional mode.

The row space of A. (i) represents the bar-tension vectors which are in equilibrium
with the fitted loads, occupying the column space of A. It has dimension ra. For any
fitted load carried by the assembly without self-stress, the vector of bar-tensions is a
linear combination of the base vectors of this space. The kinematic interpretation of
this subspace is straightforward: the subspace is filled by all r, independent sets of bar
elongations which are geometrically compatible.

The nullspace of A. (i) represents all states of tension in the assembly which are
in equilibrium with zero load, i.e. all states of self-stress of the assembly. The dimension
of this subspace is b — r4 = s. The s states of self-stress are orthogonal to all vectors
in the row space of A, as shown schematically on the left of Fig. 4. The kinematical
interpretation of this subspace is that it contains all combinations of bar elongations
which are forbidden by the conditions of geometrical compatibility of the assembly.
(Compare to the left nullspace of A, which combines all states of loading which are
forbidden by the equations of equilibrium.) These forbidden sets of bar elongations are
orthogonal to all of the geometrically compatible sets of elongations.

The diagrams of Fig. 4 are adaptations of Fig. 27 of [9]. Here, however, we have
not sought to describe the mapping between the bar space and the joint space, apart
from the relationships implied in the verbal descriptions of the subspaces. We should
perhaps emphasise here that there is no unique basis for any of the four subspaces:
any linear combination of the linearly independent base vectors will constitute an
equally valid alternative basis.

Lastly, we should remark that the only ingredients in the present treatment of the
vector spaces have been the equations of equilibrium and kinematics of the assembly;
that is, the equations of statical equilibrium of the assembly in its original geometry
on the one hand, and the equations of the kinematics of small displacements of the
assembly. from its original shape on the other. In particular, we have not considered
so far any possible relationship between the tension in a bar and its elongation in
accordance with, for example, the elasticity of the material of which the bars are made:
and neither have we considered what happens to the equations of equilibrium if the
geometrical configuration of the assembly changes perceptibly from its original state
either by excitation of one or more of the m inextensional mechanisms, or by any
elongations, elastic or otherwise, of the bars.
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3. A SCHEME OF COMPUTATION

We now describe an algorithm for the automatic computation of the value of ra
(and hence, by (9), of m, s) and of bases for the four fundamental subspaces of A.

First we write out the matrix A with an adjoining identity matrix I of dimension
3/ — k, as shown in Fig. 5(a). We then proceed to operate on the rows of the extended
anxAlhmeRMmoﬁmm%mmgAmma“mmwwpmwm”memdeMm
with zeros in the lower-left triangle, as shown schematically in Fig. 5(b) (cf. [9)). The
transformation is performed by a modified Gaussian elimination. The matrix [ as-
sociated with A is sometimes known as the record matrix, since it records precisely the
row operations performed during the elimination.

In the first stage of the transformation the aim is to have a nonzero entry in position
(1,1) with zeros in the remainder of the column. In the operations leading to this we
exchange row 1 of A | I with the row that contains the largest entry in column I, and
we use this as the pivotal row to transform the rows below it. Next we perform similar
operations on the matrix obtained by disregarding the first row and the first column,
with the aid of SeCuring a nonzero entry at (2,2) and zeros in the lower part of the
second column, as shown in Fig. 5(b).

Now while these operations are being carried out, it sometimes happens that no
pivot can be found in the column under investigation, in which case we transfer attention
successively one column to the right, until a pivot is eventually found or column 4 has
been processed.

When the process has been completed, the bottom m = 3 — k — rqrows of A
are filled by zeros. Thus, in the transformed matrix A | T shown schematically in Fig.
5(b), pivots were found in columns 1, 2 and 5, but not in columns 3,4,6and 7.

The columns with pivots are marked * in Fig. 5, and these denote in fact ra linearly
independent columns of the original matrix, which are also marked * after the trans-
formation is complete. The elements of the vector t which correspond to columns nor
marked * are the redundant bars.

Since all nontrivial applications of the method described above require the use of
a digital computer to assemble A [ 1 and transform it into A | I, the entries of these
matrices will be expressed as floating-point numbers. How many digits are stored at
any time depends on the particular computer we use: in any case small errors creep
in at each step of the calculation. Modern numerical analysis[14] makes available a
variety of techniques to prevent the buildup of unacceptable errors and improve there-
fore the numerical stability of a large-scale computation. In the Appendix we give a
schematic flowchart of our elimination subroutine: this scheme has been extensively
tested on an IBM 3081. (For these tests the smallest acceptable number was 1074)

Only a little more effort is now required in order to obtain bases for the four
subspaces described above.

Column space of A. The r, columns of A marked * form a basis for this subspace.

Left nulispace of A. The bottom m (= 3 — k - ry) rows of I form a basis for
this space. This follows from the fact that the equations A-t = L. are precisely equiv-

X % * * ok *
0 k a
A I 0000 I
0000O0O0CGGO
000000 GQ
(a) (b)

Fig. 5. Diagram to show the way that the equilibrium matrix A together with the unit matrix §

is transformed by row operations into the echelon form A | I Pivots are found in columns 1,
2 and 5.
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alent to the original eqns (5), and the bottom m rows then state that each of the bottom
m rows of I is orthogonal to f. :

Row space of A. The upper r4 rows of A form a basis for this space.

Nullspace of A. A basis for this subspace is found in the following way. Consider
At = 0. Put ¢ = 1 for the first redundant bar, and solve (uniquely) for the tensions in
the non-redundant bars. The vector t so obtained is a base vector of this nullspace.
The other s — 1 base vectors are obtained similarly by having = 1 for each of the
redundant bars in turn. Since the equations A-t = f, A-t = I-f are equivalent, solutions
of At = 0 give the s independent states of self-stress of the assembly.

4. AN EXAMPLE

Figure 6 shows an assembly of three equal bars, I, IT, 111, each of length 1 and
connected in-line to a rigid foundation at nodes C, D. We shall regard this assembly
as lying in a plane: consequently, in the expressions above, 3/ — £k is replaced by
2j — k. Herewehave b = 3,2/ — k =8 — 4 =4 k=2x%x2= 4, since joints C and
D are fully constrained in the plane. The four components of externaj force/displace-
ment are labelled 1-4 on the diagram.

By inspection, the equilibrium equation

At =f
is given by
o o of [+]_|%
N A (1)
0 0 0 fa
Thus
L -1 0|1 000
ai= |80 oo o)
0 0 0 0 0 1

and by following the procedure described above [which here involves merely the re-

placement of row 2 by I-(row 3) ~ 0-(row 2) and of row 3 by I-(row 2) — 0-(row 3]
we obtain

1

T -1 0‘1000
0] 1 —-1/0 0 1 ¢
Alizj (13)
0 0 .0/0 1 0 o
0 0 0]l0 0 0 1

3
I I T

Fig. 6. An assembly of bars and joints in a plane.
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Clearly r4 = 2,and so, by (9)s = 1, m = 2. Bar III is the redundant bar. The nullspace
of A—i.e. the 1 state of self-stress—is obtained by back-substitution from

il

Iy s (14)

coow

Io—~1

0 I -1
0 0 0
0 0 0

SO

ty | =111. (15)
i I

The other three subspaces are found exactly as described above and are displayed in
Fig. 7 (cf. Fig. 4).

All of the various features pointed out in Fig. 4 may be verified by inspection, and
the orthogonality of the respective subspaces may be checked directly.

0100 _

111] s=1 000 1fpm=
10 141
<11 00
0 -1 01
00
rA=2 Ty=

bar-space (3) joint-space (4)

Fig. 7. As Fig. 4, for the specific example of Fig. 6.

5. FURTHER ANALYSIS

The preceding description of the four fundamental vector subspaces of a general
pin-jointed assembly, and a scheme for their evaluation in a given case are, we claim,
an essential preliminary to a complete understanding of the mechanics of such
assemblies.

We have related each of the subspaces to well-known textbook ideas in the theory
of structures, but our scheme is actually something more than a compendium of existing
ideas. For example, in an assembly having a single redundant bar, 5 = I, the usual
textbook approach is to seek a single condition of geometrical compatibility by using
the known set of bar tensions in the state of self-stress, together with the principle of
virtual work. Here, in contrast, we display (e.g. Fig. 4) all independent sets of com-
patible bar elongations—each of which is, of course, orthogonal to the state of self-
stress. But the main advantage of generating, in the course of standard computation,
a full basis for each of the subspaces will be seen in Section 7, where we shall need
to know the rank of a new matrix composed in part of the column space of A.

The example in the preceding section was chosen so that m > 0and s > 0. It might
be argued that for two of the four possible classes of assembly (see Fig. 1) in which
m = 0, the usual methods of structural analysis of statically determinate and indeter-
minate assemblies are fully adequate, and hence that the vector-space approach is
unnecessary. We shall demonstrate below, however, that our approach enables us to
answer for the first time Tarnai’s questions (Section 1) concerning the mechanics of
assemblies having m > 0 (whether s = Qor s > 0); but in any case we believe that the
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conceptual and computational scheme symbolised by Fig. 4 is advantageous in dis-
cussion of the mechanics of pin-jointed assemblies in general.

Some of the techniques of linear algebra presented above are not entirely new in
the context of structural analysis. Thus, the transformation of the equilibrium matrix
into an echelon form is a generalisation of the *‘rank technique’’ method proposed by
Robinson[15]. Przemieniecki[16] and McGuire and Gallagher{17] devote sections of
their textbooks to the automatic assessment of kinematical indeterminacy. But only
Livesley[18] introduces a record matrix in his computational scheme in order to evalu-
ate automatically a mechanism of plastic collapse of a redundant frame. Buchholdt,
Davies and Hussey[19] were the first to give a general formula corresponding to (3),
but they did not pursue linear algebra beyond this point. Crapo(20], of the Research
Group on Structural Topology, has many points in common with the present work. He
discusses the same vector subspaces, but goes on to take a projective-geometric view,
whereas we have decided to compute in detail the bases of these subspaces. Other
workers in the same group{21, 22] have proposed general criteria for the rigidity of
particular classes of pin-jointed assemblies in n-dimensional space.

6. RIGID-BODY MECHANISMS

The scheme described above gives, in particular, m independent inextensional
mechanisms of the assembly spanning the left nullspace of A. In the case where the
assembly is unattached to a rigid foundation, these will obviously include six indepen-
dent inextensional motions of the assembly as a rigid body in three-dimensional
Euclidean space, in addition to any internal inextensional mechanisms which the
assembly may possess. It is clear that the procedure described above does not make
this distinction, and that an efficient algorithm is needed to segregate the rigid-body
mechanisms from the others. The following scheme does this; and it can cope with
assemblies having any number between zero and six of rigid-body motions.

Consider the previous general pin-jointed assembly, having a total of k kinematic
constraints to a rigid foundation, and let the locations of the joints in the original
configuration be described with respect to fixed Cartesian coordinates Oxyz. Any rigid-
body displacement of the assembly may be described by translation and rotation vectors

Mo = (Nox, Aoy, Noz)y T = (re, 1y, 1), (16)
Here no represents the displacement of that point of the assembly which lies at the
origin of the coordinates in the original configuration; r is the rotation about this point.
In such a rigid-body motion the displacement of a point i having position vector q in
the original configuration is given by

W = ng +r X g. (17)

Now if 7 is a joint of the assembly which is fully restrained to the foundation, the three
kinematic conditions

'l,l,' U E oWy o= 0 (18)

are imposed on any rigid-body motion; and thus (18) gives three scalar equations:

Nox + Lify — Y = 0,
Moy — Zifx + xir, = 0, (19)
oy + Vi — Xiry = {.

If this joint had only two or one degrees of kinematic constraint, then two or one of
the above three relations, respectively, would apply. Each of the external restraints
imposes one condition on ne and r; and hence the k external constraints together give a
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system of &k equations in six unknowns:

(CT- [-] = (0]. (20)

C is a k by 6 kinematic matrix. The rank rc of this matrix counts how many of the k
external constraints effectively suppress rigid-body degrees of freedom of the assembly.
This rank can be determined by the procedure described earlier in relation to the matrix
A.

Thus we may obtain the number, rb, of rigid-body motions:

th =6 — re. 20

The procedure also provides a basis for the subspace of these rigid-body motions in
terms of the six scalar components of ng, r, and these may be used in (17) to obtain
an expression for these rigid-body mechanisms in terms of the components of displace-
ment of each joint of the assembly.

Having determined the rb rigid-body motions in this way, we now require to find
a basis for the im-dimensional space of internal mechanisms of the assembly:

im = m - rb. 22)

First we orthogonalise the m intextensional mechanisms already found in Section

3,saya,, ..., a,(i.e. the left nullspace of A) to the rb rigid-body mechanisms, which
themselves have also been orthogonalised, say by, . . . , bep by use of the formula
a,-'bj .
a = a; — =1,...,rb. 23
b > )

This operation transforms the original mechanisms into a set of 7 internal mechanisms.
We know that only im of these are linearly independent; and we can use modified
Gaussian elimination, as in Section 3, to detect which columns of the (3j — k) by m
matrix (a, . . . , a,,) are dependent on the others. These are then suppressed, and the
remainder form the required basis for the space of internal inextensional mechanisms
of the assembly.

7. STIFFENING EFFECTS OF SELF-STRESS

So far we have been concerned only with the separate equations of equilibrium
and kinematics of small deflections of an assembly in its original geometry. Let us
investigate further an assembly with s > 0 and m > 0; and, for reasons which will
become clear later, let us consider only the im internal inextensional mechanisms. First
let us give the assembly a state of self-stress, and then let us impose a small amplitude
of one or more of the internal inextensional mechanisms.

In its original configuration, of course, the assembly is in equilibrium under zero
external load. But when the geometry is altered slightly this will no longer be true. in
general, since the coefficients of (5) will have changed slightly; and indeed it has already
been shown[4, 5] that in some relatively simple examples a state of prestress can stiffen
one or more inextensional mechanisms.

The key to the situation is the evaluation of the so-called product-force vector[10]
associated with any given mechanism in an assembly which sustains a given state of
self-stress. For this purpose we consider that the state of self-stress in the assembly
does not change when the mode of inextensional displacement is excited: certainly the
self-stress need not change in an assembly of elastic bars since—to first order, at least—
the lengths of the bars do not alter during the deformation.

Rewriting the equilibrium eqns (4) for an infinitesimally displaced configuration,
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we have
[ + wi) = Op + u)l 0 + [+ w) — (5 + )l ty = fix,
[yi +v) =+ vl s + (i +vi) = (yj + v)] b = Fivs (24)
@+ w) = (zn+wltr + @+ w) — (z + wl it = fi,
where w;, v;, w;, . . . are the components of displacement of joint i, . . . according to
the inextensional mechanism considered, and #,, . . . are now understood to denote a

state of self-stress. Subtraction of eqns (4), written in the original configuration, from
eqns (24) gives the expressions for calculation of the product forces:

Dix = (U; — un) t; + i — W) tm,

]

Piy = (Wi — v) i + (Vi — U)) b, (25)

I

Piz = (Wi — wp) i + (Wi — w)) 1.

Equations of this type can be used for each unconstrained component of joint dis-
placement and for each internal mechanism to assemble a set of im vectors of di-
mension 3j — &:

plv ey pim- (26)

For example, in the assembly of Fig. 6 the state of self-stress consists of a uniform
tension r. Let the product forces be evaluated separately for each of the two mechanisms
already determined. By inspection, the product-force vectors are proportional to

0 0
2 -1
0 0 @D
-1 2

When each column is multiplied by the product of 1 and the (small) amplitude of joint
displacement, it gives the product-force vector.

Our earlier analysis revealed (Fig. 4) a vector subspace of dimension r4 (the column
space of A) of fitted loads which could be carried by the assembly in its original con-
figuration. We can now supplement this with the im-dimensional subspace of product
forces, making a (3j — k) by (3/ — k — rb) matrix A’, as shown in Fig. 8.

39—k

\

Fig. 8. The general form of A" The left-hand r, columns represent the column space of A (Fig.

4, on the right), and the right-hand im columns are the product-force vectors (Section 7) cor-

responding to the internal inextensional mechanisms. A’ is square in the case (rb = 0) of
assemblies properly constrained to a rigid foundation.
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Notice that the new subspace of product forces is quite different in principle from
the subspace of forbidden loads revealed by our earlier analysis. That space consists
of those loads which cannor be carried in the original configuration; but the product
forces are those loads which can be carried on account of self-stress when the inex-
tensional modes are given small displacements.

It is obvious without any manipulation that the rigid-body motions develop zero
product forces: the product force at any joint is a consequence of relative rotations of
the bars meeting at the joint, which are obviously zero in any rigid-body motion. This
is the reason why only product forces corresponding to internal mechanisms need to
be assembled in A’.

When rb = 0, matrix A’ is square; and it follows immediately that there is a
possibility that, when we allow the assembly to distort in its inextensional modes. it
will be able, after all, to support a completely arbitrary set of loads——provided. of
course, the amplitudes of the resulting inextensional modes are sufficiently small. This
will be the case if the matrix A’ is of full rank. For example, the assembly of Fig. 6
has

I -1 0 0
N
0 0f -1 2
and it is easy to see that
rank(A') = 4; (29)

hence this particular arrangement of bars is capable of withstanding arbitrary vertical
and horizontal loading at the Joints—subject, of course, to the restriction noted above
on the amplitude of vertical displacements.

The example of Fig. 6 is, in fact, a primitive sort of cable-net, and it has been
shown already[S, 10] that for certain simple types of cable-net having a substantial
number of joints, a completely arbitrary pattern of loads may be sustained. We are
currently investigating certain problems associated with the computation of the re-
sponse of cable-nets to arbitrary loads.

In the present paper, however, we shall look in a different direction, at the
hypothetical situation in which the product forces, computed as above, all lie within
the column space of A. In this case the product forces are non-zero, but since they lie
within the space of fitted loads they do not enable the assembly to carry any loads
that it could not carry in its original configuration: the state of self-stress does not
impart any first-order stiffness to the mechanisms of the assembly.

Figure 2 shows an assembly which has exactly this property. It is a regular four-
sided ring on a level rigid base. The 12 X 12 matrix A is found to have r4 = 11, and
S0

m=gs = |, . 30)

The simple inextensional mechanism involves the upper square distorting into a dia-
mond shape, as shown in Fig. 2(b). It is straightforward to evaluate the product-force
vector corresponding to a small displacement of this mechanism and, thus, to assemble
the matrix A'. It turns out that r,- = 11 and so, unlike the example of Fig. 1(d.1), the
state of self-stress does nor stiffen the assembly against inextensional deformation and.
thus, does not enable it to support loading which was forbidden according to the first
analysis.

Now it is well known[6] that the ring of Fig. 2 belongs to a class of mechanisms
which are free to undergo large displacements. This feature may be verified by ele-
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mentary trigonometry; and Tarnai[23] has shown that in general it depends on the
presence of a plane of mirror symmetry.

8. FIRST-ORDER INFINITESIMAL MECHANISMS

The example of the ring (Fig. 2) which is not stiffened against inextensional de-
formation by prestress, together with the assembly of Fig. 1(d.1) which is stiffened by
prestress, illustrate the conjecture of Tarnai, mentioned in Section 1: a state of self-
stress imparts first-order stiffness to one mechanism but does not impart any stiffness
to another which is already known to be a finite mechanism.

How can we explain the mechanics behind this conjecture, and thereby demon-
strate that the conjecture is true?

Consider the assembly of Fig. 6, prestressed and subjected to a load in the direction
2. The assembly provides some stiffness against this loading, as we have seen, because
the change in geometry according to the inextensional mechanism enables the pre-
stressed bars to balance an external load. The assembly has some first-order stiffness.
Therefore it absorbs some energy as the load increases. How is this energy stored?
The only possible way in which energy can be stored in the assembly is by the strain-
energy associated with a second-order elongation of the bars. In this example it is clear
from Pythagoras' theorem that second-order changes of length are needed for the dis-
tortion of this mechanism. It is also clear that this type of second-order stretching will
in general tend to increase the level of prestress in the assembly, so that the relationship
between transverse load and transverse deflection will in general be nonlinear: it is
only linear—as revealed by the product-force calculation—for sufficiently small de-
flections. When the assembly is prestressed, the transverse displacement which gives,
geometrically, second-order changes in length of the bars also gives a second-order
change in the strain energy of the bars. and thus imparts the first-order stiffness which
is detected by the matrix method of Section 7.

What all of this amounts to is that any first-order stiffness which a state of self-
stress imparts to an inextensional mechanism may be taken as evidence that the
geometry of distortion in fact requires second-order changes of lengths in the bars.
Hence, if no first-order stiffness is detected by our method, then the inextensional
mechanism is either a second- or higher-order infinitesimal mechanism or a finite
mechanism. Tarnai’s conjecture is thus confirmed. We can also see that the order of
the stiffening which is imparted to an infinitesimal mechanism by prestress is directly
related to the order of changes of length in the bars; which provides an answer to
Tarnai’s first question. '

If the product-force vector does not lie in the column space of A, then the cor-
responding mechanism is infinitesimal, of first order. But if it does lie in the column
space, we cannot distinguish between a higher-order infinitesimal mechanism and a
finite mechanism. This provides both an answer to Tarnal’s second question and also
a qualification of it.

If a given assembly has m > 0 and s = 0, the product-force vectors are necessarily
zero, and therefore the corresponding mechanisms are not infinitesimal of first order.
Examples of this kind which are finite mechanisms [e.g. Fig. 1(b)] are well known.

As a further example we consider a small version of a tetrahedral-octahedral truss,
shown in Fig. 9. This truss has two equal square grids lying in horizontal planes. with
the joints of one grid vertically aligned with the centres of the squares of the other.
Each joint is connected by bars to the four nearest neighbours of the other grid. Figure
9 shows the smallest possible version of this truss, with two squares in each grid.

The truss satisfies Maxwell's rule for a rigid assembly which is free in space:
substitution of b = 30, = 12 in (10) gives

s —m = — 6. 3D

Therefore, if s = 0, m = 6, corresponding to the rigid-body motions. But Crapo{24}
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Fig. 9. Perspective sketch of tetrahedral-octahedral truss. The joints at the lower level are
shown black.

shows, correctly, that im = 1, and he also states, without proof, that the mechanism
is not finite.

We have subjected this assembly to the present scheme of analysis, by means of
our computer program, and with the following results:

ra = rank(A) = 29,

SO

s=b-ry=1 (32)
and

m =3 —rq =7.
Also,

th = 6,

$O

im=m —rtb = 1. 33)

The assembly thus has one state of self-stress and one internal mechanism in addition
to six rigid-body motions. The matrix A', found by compounding the column space of
A (29 columns) and the product-force vector (one column) is found to have rank(A")
= 30; therefore the internal mechanism is a second-order infinitesimal one. In a more
complicated example having s > [, it would be necessary to assemble A’ and determine
its rank for each independent state of self-stress.

9. DISCUSSION

We have succeeded in giving a matrix test for a first-order infinitesimal mechanism,
as distinct from a higher-order or a finite one. We believe that the test is generally
valid, provided we take into account one further point, concerning the stability of
equilibrium, as follows.

Consider again the assembly of Fig. 6. If we envisage the bars as elastic and

348 22:4-E
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o —0

Fig. 10. Example of Kuznetsov(26], related to the assembly of Fig. 6, but which has different
properties.

introduce a state of compressive self-stress by lengthening slightly one of the bars, the
assembly thereby becomes loose in a way which we would normally describe by

s =0, m = | (34)

instead of havings = 1, m = 2 for the assembly as shown and as discussed previously,

In Section 8 we described how an assembly absorbs energy by second-order elastic
elongations of the bars. The assembly is stable only if the strain energy increases for
every mode([25]. We can detect positive stiffness in first-order infinitesimal mechanisms
by our matrix method through an examination of the sign of the scalar product of the
nodal displacements of a mechanism and the corresponding product-force vector. In
our example of Fig. 6, this scalar product has the same sign for both mechanisms, and
so a change to compressive prestress makes both mechanisms unstable. Kuznetsov({26]
has an example, shown in Fig. 10, which is a variant of our Fig. 6 and also has 5 = |,
m = 2, but in which the scalar product of the mechanisms and the corresponding
product forces are of opposite sign. This implies that one of the two mechanisms is
unstable whatever the sign of the prestress: and in fact the assembly is free to distort
as a four-bar chain.

It is thus clear that our matrix test of Section 7 for first-order stiffness must be
supplemented in general by a check that the scalar product of all mechanisms with the
corresponding product forces are positive.

Itis interesting to note that Maxwell was aware of special cases such as frameworks
which satisfied his rule but had both s > 0, m > 0[4]. He associated these loosely with
conditions of maximum or minimum length. A cable-net of the kind studied in [5, 10]
provides a nice example of this. It is generally loose, with s = 0, but it becomes tight,
with s = | when the members are steadily shortened. The change in behaviour occurs
precisely when the members are so short that they could not be connected at all (in
the absence of elastic stretching) if they were made any shorter—a clear case of min-
imum length. It is precisely the fact that the total length of members is minimum initially
and can thus only increase under any pattern of distortion, which generally makes the
level of prestress increase as the assembly distorts.

The case illustrated in Fig. 2 also satisfies Maxwell's rule and also has s = | > (,
m = 1 > 0. It can distort freely as a mechanism, with absolutely no change in length
of its members. As we have already seen in Section 7, the product-force vector for the
self-stressed assembly lies in the column space of the equilibrium matrix: self-stress
imparts no first-order stiffness to the assembly. This assembly is evidently of a type
not envisaged by Maxwell: its key feature is one of symmetry (see Section 7) rather
than of maximum or minimum length. Our matrix test successfully detects the absence
of first-order stiffening due to prestress. In cases like this, the mechanism may in fact
be a finite one; and it would be sensible to search for matters of symmetry, etc. by ad
hoc methods.
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APPENDIX
TRANSFORMATION OF COLUMN j OF A

In the following description { — | pivots have been found in previous stages of the elimination: therefore
the first i — | rows and j — | columns of A have to be disregarded.

Choice of pivotal row : For rows i+ 3j, if the entry in column j —-
a, say — is greater than the smallest
acceptable number, choose the largest entry
of the row not in column j — 4, say, and
evaluate a/b. Otherwise skip the row.

1

If the previous check was never satisfied
the column is ‘dependent ', and the
computation moves to column j+1.
Otherwise the pivotal row corresponds to
the greatest computed ratio. This
technique is called scaled pivoting.

1

Pivotal row and row i are exchanged.

|

Transformation All entries of the pivotal row are divided
of pivotal row: by the pivot. The (i.) entry is now |.

l




428

S. PELLEGRING aAND C. R. CALLADINE

Transformation of
entries below pivot:

l

For rows i+ 3j — k, if the entry below
the pivot is smaller than smallest
acceptable number, skip the row.

If the row can be considered proportional
to the pivotal row, set all its entries
equal to zero.

Otherwise subtract the entry below

the pivot multiplied by the pivotal row.




